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ABSTRACT

Due to its numerous but important applications, the mean residual life (MRL) has seized
the curiosity of several researchers both in theory and in practice. It is defined as the
remaining life expectancy of a subject given its survival up to time t. As an alternative
approach to the Cox proportional hazards (PH) model in studying the relationship of survival
times with the subject's explanatory covariates, the proportional mean residual life (PMRL)
model was introduced in the literature. These two models are the same in form in that the
function of interest is expressed in terms of the product of its baseline function and some
proportionality constant. The only difference is that the latter directly models the. MRL
instead of the hazard. In this paper, the relationship between these two models is investigated
analytically and illustrated by actual data. General relationships between the hazard function
and mean residual life function are presented as well.

Key words and phrases: proportional mean residual life model, proportional hazards model,
life expectancy, hazard function, censoring

I. INTRODUCTION
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A major concern in studying survival data is estimating the basic functions associated
with survival times. This might be the survival function, hazard function, or the mean
residual life function. Formally, when T (representing the time until the occurrence of the
event of interest) is a nonnegative random variable on a probability space (n,3,p), the hazard

p(t~T~t+8tIT>t)
function, h(t) =lim - ,gives the risk of failure per unit time along the

M~O ~t .

"aging process." On the other hand, the mean residual life function, m(t) = E [T - tiT ~ t] , is

the remaining life expectancy of a subject given its survival up to time t. While the hazard
function at t provides information about a very small interval after t, the MRL provides
information about the whole interval after t (Guess and Proschan, 1988).

Many researchers, however, have been enthralled to study the relationship between
survival times and their explanatory variables or covariates. Accordingly, Cox introduced a
general nonparametric proportional hazards (PH) model, having the hazard function as the
response function. When the survival times are continuously distributed, the hazard is

h(t IZ) =ho(t)exp(y'Z) (1.1)

1 First author is an instructor in the School of Statistics, University of the Philippines with email
address: jgyabes@yahoo.com; second author is a retired professor in the same school.



34 Yabes & De Guzman: Relationship between
the Proportional Hazards Model and the
Proportional Mean Residual Life Model

where Z is the p-vector of covariates, "( is the p-vector of regression coefficients, and ho(t) is

the (baseline) hazard function of the underlying survival distribution (arbitrary) when Z is
ignored, that is, Z = 0 (Lee, 1992).

As an alternative to the Cox proportionalhazards model in studying the association of
survival times and their covariates, Oakes and Dasu (1990) proposed the proportional mean
residual life (PMRL}model:." .

m(t IZ) =mo(t)exp(p 'Z) (1.2)

where m(t IZ) is the mean residual life function, Z is the p-vector of covariates, P is the p

vector of associated coefficients, and mo(t) is some unknown mean residual life when z=o
and is unspecified in its semi-parametric version.

Notice that models (1.1) and (1.2) are the same in form in that the function of interest
is expressed in terms of the product of its baseline function and some proportionality
constant. Both involve baseline functions where the p-vector of covariates Z is 0, and some
proportionality constant expressed as the exponential of a linear combination of the
covariates. The only difference is that the first models the hazard rate or risk of immediate
failure, while the latter models the mean residual life function or life expectancy. A natural
question to ask is: how is the Cox proportional hazards model related to Oakes and Dasu's
proportional mean residual life model? Since the two models arise from the same survival
times and covariates, what could be the link between their baseline functions and how are
their parameters related?

Oakes and Dasu (1990) and Gupta and Kirmani (1998) were able to show that the two
models coincide if and only if mo(t) is linear in t. In addition to this, its underlying

distributions then belong to the Hall-Wellner class of distributions. That is, its baseline MRL
function is of the form mo(t)=At +B , where A>-1 and B>O (Hall and Wellner, 1981). This

yields the Pareto, Exponential, and rescaled Beta distribution when A>O, A=O, ind -1<A<0
respectively (Oakes and Dasu, 1990). Meanwhile, Guess and Proschan (1988) noted that the
MRL is inversely related to the hazard function corresponding to the residual life time of
stationary renewal process.

In this paper, we shall find the relationship of the PH model and the PMRL model by
utilizing well known mathematical relationships between the survival function, hazard
function, and the mean residual life function. Specifically, this study intends to analytically
find the relationship of the baseline hazard function ho(t) and the baseline mean residual life
function mo(t), and hopes to ferret the connection between the parameters of the two models.
Thus, the next section is first devoted to discuss the correspondence between the basic
quantities in survival analysis in general, that is, without assuming models (1) and/or (2).
After which, given the p-vector of covariates Z, we present the relationship between the
conditional mean residual life m(tIZ) and the conditional hazard function h(tIZ) under the
assumption of proportionality of the hazards and proportionality of the mean residual life
separately in Section 3, and then investigate further by assuming proportionality of both the
hazards and mean residual life in Section 4. After which, we shall illustrate the results
analytically and empirically in Sections 5 and 6 respectively, then conclude with Section 7.
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II. GENERAL RELATIONSHIP BETWEEN HAZARD AND
MEAN RESIDUAL LIFE
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Let us first recall that if T is a nonnegative random variable representing the failure
time with density j{t), the mean residual life function is

met)=E[T - tiT> t]=
I xf(x)dx
-=-------t ,for S(t) > 0

Set)

o .for S(t) = 0

Note that if S(O) = 1, the mean or expected value of T is just the MRL at time zero, i.e.,
u = E[1] = m(O). However, when S(O) < 1, m(O) = j.dS(O) i- u. For simplicity, we shall assume
that S(O) = 1 unless otherwise indicated.

Let us now look into the relationship, in general, of the MRL function with the other
basic functions associated with reliability and survival analysis. The following theorem
relates the MRL to the survival function and the survival function to the MRL:

Theorem 1: Let T be a nonnegative random variable with survival function S(t) and density
j{t) > 0 such that E[1] < 00, and let r =sup{t IS(t) > O}. Then for 0 ~ t.~ r,

f S(x)dx
1(a). met) = Set) ; and

1(b). Set) = m(O) exp{- r_1_ dx} .
m(t) 1 m(x)

Proof
We furnish you with a proof of (a) as that of Klein & Moeschberger, (1997). By

definition, we have

r(x-t)f(x)dx
met) = E[T - tiT> t] = -=----

Set)

for 0 ::s t ~ 'to Integrating by parts (letting u = (x-t) and dv = j{x)dx and using the fact that
f(x) = -dS(x)/ dx) yield

E[T -t IT> t]S(t) =-(x-t)S(x)l~+ f S(x)dx.
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Noting that lim Sex) = 0 and ~ Sex) = - I(x), the first term in the right-hand side of the
x-+oo

above equation is zero because

lim [-(x - t)S(x)]
x-+oo

[ ]
2

. X . Sex) .
= - hm- = - hm , by L'Hopltal's rule

x-+oo_1- x-+oo I(x)
S(x)

= 0 , since I (x) > 0 .

Dividing both sides by S(t) yields the desired result.

By writing (x - t) as rdu, and using Tonelli's formula, an alternative proof is given

by Gupta & Bradely (2003).

Let us now supply a direct proof of result (b) by first noting that for 0 ~ t ~ r, Set) > 0
so that m(t) > 0 as well. Hence we can rewrite (a) as

1 Set)
=----'--'-

met) rS(x)dx

But since ~() =~ !_(1)dx and -S(t) =~[log(fS(x)dx)-log[m(o)]], we
m t dt m x f S (x )dx dt

have

1 () [fS(X)dx]-! m(x) dx = log f S (x )dx -log [ m(0)] = log m(0) .

This implies that rs (x)dx ~ m (0)exp{-£ m;x)<Ix}. Dividing both sides by m(t) and

multiplying the left-hand side by S(t)/S(t) completes the proof. _

Theorem l(a) expresses the MRL in terms of the survival function. This gives us a
geometric interpretation of the MRL, i.e., met) is the area under the survival curve to the right
of t divided by S(t).

On the other hand, the inversion formula, Theorem 1(b), expresses the survival
function in terms of the MRL. This is often presented in the literature, but among those which
we have encountered, however, only Meilijson (1972) provided a proof. His interesting
approach is different from what we have just presented in that he recognized the relationship
of the distribution of the residual life of a stationary renewal process with the MRL.

Theorem 1 shows that there is a one-to-one correspondence between survival
functions (with finite means) and MRL functions (Chen, Hollander and Langberg, 1983).
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Hence, the MRL function uniquely determines the survival distribution so that it can also be
used for modeling (Hall and Wellner, 1981).

We now utilize Theorem 1 to relate the MRL with the density function, hazard
function, and cumulative hazard function.

Theorem 2: Under the same assumptions as in Theorem 1,

2(a). J(t) = (!!..-m(t) +1)( m(O~ Jexp{-£-l_dx} ;
dt met) m(x)

2(b). h(t) =(~ m(t) +1)/m(t); and

2©. met) = rexp{H(t)-H(t+x)}dx.

Proof
It IS straightforward to show Theorem 2(a) by again using the relationship

I(x) =-dS(x)/ dx.

To show Theorem 2(b), it is well known that h(t) = .f{t)/S(t). Substituting the
expression in Theorem 2(a) and in Theorem1(b) correspondingly and simplifying will yield

h(t) = (t1t m(t )+1)
met)

Alternatively, one can exploit the fact that h(t) = -d[logS(t)]/dt and apply it to Theorem1(a).

Now we utilize the fact that S(t) = exp{-£ h(U)du} = exp{-H(t)} to prove Theorem

2(c). Letting u =x-t in Theorem 1(a), we have

m(t) = rS(t+u) du= rexP{-H(t+U)} du
S(t) exp{-H(t)}

Therefore, met) =rexp {H (t) - H (t + x)} dx .

An alternative derivation of Theorem 2(c) can be found in Gupta & Bradely (2003) •

Theorem 2(b) poses a natural restriction on the rate of change of the MRL,; m(t).

Since h(t) > 0, (t1t met) +1)/met) > O. This in tum implies that ; met) > -1.
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Although rarely found in books, Theorem 2(b) is popular among papers which
investigate the MRL in conjunction with the hazard because it shows the relationship
between the two.

We now have expressions of the MRL in terms of the survival function and the
cumulative hazard function, and expressions of the survival function, density function, and
hazard function in terms of the MRL. Ideally however, we would like to express the MRL in
terms of the hazard rate or some of its known functions or derivatives without the
complication of integrals. Moreover, note that these equations do not involve covariates yet.
For the intention of investigating the relationship between the proportional mean residual life
(PMRL) model and the proportional hazards (PH) model, we extend these results naturally to
include covariates as follows:

rS(xl Z)dx
1. m(t IZ) = . .

S(t IZ)' ,

2. m(t IZ) = rexp {H (t IZ) - H (t + x IZ)}dx ;

3. S(t IZ) = m(O IZ) exp{- r 1 dx};
m(t IZ) .b m(x IZ)

4. f(t IZ) =(~m(t IZ)+1)( m(O IZ~ )exp{- r 1 dx}; and
dt m(t IZ) .b m(x IZ)

5. h(tIZ)=(~m(tIZ)+I)/m(tIZ).

III. HAZARD AND MEAN RESIDUAL LIFE UNDER THE PROPORTIONAL
HAZARDS OR PROPORTIONAL MEAN RESIDUAL LIFE ASSUMPTION

Cox's PH model has been widely used and studied in practice and in the literature. Its
theoretical and practical characterization has been virtually present in any survival analysis
textbook. The next theorem recollects the relationships that exist between the basic functions
associated with survival analysis under the PH model.

Theorem 3: Under the proportional hazards model assumption, the following equalities hold:

3(a). S(t IZ) = So (t)exp{y'z} , where So(t) = exp{1ho(X)dx};

3(b). H(tIZ)=Ho(t)exp{y'Z}, where Ho(t) = 1ho(x)dx;

[ J
exP{Y'Z}-1

3(c). f(t IZ) = exp{y'Z} h(t) rh(x)dx , where h(t) = ho(t)So(t); and
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{ }

exp{y,z}rexp rho(u)du dx rSo (xtXp{y'Z}dx
3(d l • met IZ) = = {

v { !r }exPIY'Z} S (x t XP Y'Z}
exp 1ho(u)du 0
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Together, these formulas provide the rudimentary theoretical characterization of the
PH model. Their proofs are relatively simple via straightforward deployment of fundamental
relationships between survival, hazard, density, and MRL functions. But the importance of
these formulas lies in being able to relate the basic survival analysis functions conditioned on
some covariates with their baseline counterparts.

Shifting now to the next model of interest, we assume proportionality of the MRL.

Theorem 4: Under the proportional mean residual life model assumption, the following
equalities hold:

4(a). Let So(t) =(--.!!L)exp{-r~}, where Po =mo(O) is the baseline mean
mo(t) mo(x)

lifetime. Then

( J

eXPI- p'Z}_l
So(x)dx

(.). Set IZ) =So(t) r 1'0

( )

eXPI- p'Z}-1

(ii). Set IZ) = So (t)exp{-p'z} m~;t) ; and

I
frmo(t)exp {P 'Z} +1 frmo(t) +exp]-P'Z}

4(b). h(t Z) = = .
mo(t)exp {P 'Z} mo(t)

The proof of Theorem 4, though not presented, is a direct application of the inversion
formula in Theorem l(b) and of Theorem 2(b). Meanwhile, notice that Theorem 4(a) shows
the fonn of the survival function under model (1.2). Interestingly, Oakes and Dasu (1990)
also presented Theorem 4(a.i) except that it was under the two-sample case. Here, the
survival function of the model is expressed in tenns of the baseline survival function and
baseline mean lifetime. A minor complication however, is that, it involves the integral of the
baseline survival function. When the baseline MRL is known, an alternative and more
convenient expression is Theorem 4(a.ii).
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IV. HAZARD AND MEAN RESIDUAL LIFE UNDER BOTH PROPORTIONAL
HAZARDS AND PROPORTIONAL MEAN RESIDUAL LIFE ASSUMPTIONS

Let us now investigate the relationship between the two models analytically by
illustration using actual data. This time, we assume proportionality of both the hazard and the
MRL. The next theorem overtly relates the baseline hazard function with the baseline MRL
function.

Theorem 5: The distribution of a nonnegative random variable T satisfies both proportional
hazards and proportional mean residual life assumption if and only if the baseline mean
residual life function is inversely proportional to the baseline hazard function. That is,

exp{-p ,Z} -1
ho(t)mo(t) =c , where c = { } is the proportionality constant.

exp y'Z -1

Proof

Suppose both (i) h(t IZ) = ho(t) exp(t'Z) and (ij) m(t IZ) = mo(t) exp(p' Z) are

satisfied. Then (ii) and Theorem 4(b) implies

exp{-p 'Z}-l
h(tIZ)=ho(t)+ .

mo(t)

But under (i), h(t IZ) =ho(t) exp(y ,Z) , and so

exp{-p ,Z} -1
ho(t)exp{y'Z} - ho(t)= .

mo(t)

Factoring out ho(t) in the left hand side and doing a little more algebra yields

exp{-p ,Z} -1
ho(t)mo(t) = { } =c,

exp y'Z -1

where c is constant since p and yare vector of constants and Z is known. •
Theorem 5 might initially lead us to think that if we know that the baseline

distribution satisfies both PH and PMRL model, then we can always find a straightforward
relationship between the parameters y and p by equating the product of the baseline

exp{-p ,Z} -1
functions with { } then express one parameter in terms of the other. This might

exp y'Z -1

not always be possible, though. But in the presence of a single covariate, that is Z E 9'l1 , it is
straightforward to see that

-log {c[exptj-Z) -1] + 1}P=-----'-....::....------::....--<-

Z
(4.1)
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The next theorem characterizes the relationship between the baseline hazard and
baseline MRL under the Hall-Wellner family of distributions.

Theorem 6: mo(t) =At + B, where A>-l and B>O, if and only if ho(t)mo(t) =c for some

constant c>O.

Proof

Suppose mo(t) = At + B, with A>-1 and B>O. Then from Theorem 2(b),

h ()
_ 1tmo(t) +I _ A+l

o t - - .
mo(t) At+B

Hence, ho(t)mo(t) =A +1=c.

Now suppose ho(t)mo(t) = c. Then ~ mo(t) = c -1, again by Theorem 2(b). That is,

~ mo(t) is constant. This happens if and only if mo(t) is linear in t. •

Theorem 6 states that the baseline distribution is a member of the Hall-Wellner family
(distributions having MRL linear in t) if and only if the baseline hazard function is inversely
proportional to the baseline MRL function. Hence, if we want to find out whether a set of
observations spawned from a member of the Hall-Wellner family, we can graph the product
of the estimated baseline hazard and baseline MRL and examine its tendency to be a flat
curve.

Theorems 5 and 6, together, imply that a distribution satisfying both proportional
hazards and proportional MRL belongs to the Hall-Wellner class of distributions. This
provides an alternative proof for Oakes and Dasu's Theorem 2 (1990). Moreover, if one is
interested in the slope or the rate of change of the baseline MRL, Theorems 5 and 6 jointly
give

A == exp {-fJ 'Z} -1
exp {'1 'Z} -1 1.

(4.2)

Therefore for a particular dataset realized from a member of the Hall-Wellner class of
distributions, we can estimate the slope of the baseline MRL by substituting the regression
parameter estimates of the PH and PMRL model in equation 4.2.

The expression of the hazard function in terms of the MRL function in Theorem 2(b)
has been so far, of great utility in the previous discussions. Until now, however, we were not
able to explicitly express the MRL in terms of the hazard. Nevertheless, if we assume that the
MRL is linear in t, i.e, met) = At +B , we have

met) = A+l .
h(t)

(4.3)
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v. ANALYTIC EXAMPLES

In this section, we demonstrate the results obtained in the previous section by
considering the Exponential distribution and the shifted Pareto distribution. After which, the
next section would show how they work in reality using the well-known Veterans'
Administration (VA) lung cancer trial.

Example 1: Exponential Baseline Distribution

Suppose the baseline distribution is Exponential with parameter A, > O. The baseline
hazard is then

(5.1)

and the baseline MRL function is

Hence, ho(/)mo(I) =c , where c = 1. It follows from Theorem 5 that

p=-y.

(5.2)

(5.3)

This implies that estimating y under Cox's PH model is equivalent to estimating p under

Oakes and Dasu's PMRL model if the underlying distribution is exponential. In real life
survival data however, this is rarely the case. But in addition, equation 5.3 also means that
testing the null hypothesis that p+y = 0 is equivalent to testing the hypothesis that the

baseline distribution is exponential. More generally, one can test for exponentiality if the
product of the baseline hazard and baseline MRL is unity for all I.

It is nice that for the exponential baseline distribution, a direct relationship between y
and p exists. However, this does not always happen as in the next example.

Example 2: Shifted Pareto Baseline Distribution

Consider the Pareto Distribution with distribution function r, (x) =1-(:Jwhere a

and b are both greater than zero which is also used to model lifetimes. However, notice that
the distribution function is defined only for x ~ b. We do not want this restriction for
lifetimes. Thus, we let T =X - b so that 1~ O. The distribution function of T is then

1': (I) =1-(_b_)O
T I+b

(5.4)
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Let us now assume that the baseline distribution is as stated in equation 5.4. Then the baseline

survival function is So (t) = (_b_)O ,the hazard function is
t+b

ah (t) - fo(t) _ ( abo J(_b)-0 = =
o - So(1) - (t+bf+1 t+b (t+bf+1 (t+bro t+b

and the MRL function is

r( b )0 dx

mo(t) = (~)O = :~~ for a> 1.

t+b

(5.5)

(5.6)

. . a . a . exp {-p ,Z} -1
EquatIons 5.6 and 5.6 yield ho(t)mo(t) = ( ) = c . Equatmg ( ) WIth •

a-I a-I exp(y'Z)-1

does not show explicit relationship between y and p however.

One might observe that the baseline distributions in examples 1 and 2 belong to the

Hall-Wellner family. Notice that equations 5.2 and 5.6 are linear with A=0,B=A-1 and

A =(a-I)-1 , B =b (a_I)-I respectively. This illustrates Theorem 6.

VI. THE VETERANS' ADMINISTRATION LUNG CANCER TRIAL

The well-known Veterans' Administration lung cancer trial (Kalbfleisch and Prentice,
1980) is used as actual data illustration. This dataset has been analyzed by several authors
already, but we shall only present the estimates produced by Chen and Cheng (2005) to
illustrate theorems 5 and 6 discussed in the previous section. They utilized the no-prior
therapy subgroup which consists of 97 patients, having survival times ranging from 1 to 587
days with 6 censored observations (see Table 6.1).

The Kaplan-Meier estimates of the survival times are shown in Figure 6.1. On the
other hand, the mean residual life estimates are displayed in Figure 6.2, and a smooth line is
fitted and superimposed to espouse visualization. These values were calculated by means of
the Kaplan-Meier analogue of the empirical MRL which was instigated by Chen, Hollander
and Langberg in 1979. It is fortunate that for this dataset, the last observation was
uncensored. Otherwise, it would be impossible to estimate the MRL unless some assumptions
are made. Figure 6.1 reveals an initial impetuous descent in the survival probability estimates
up to about time 160 days, but then gradually decreases subsequently. Meanwhile, the MRL
in Figure 6.2 generally tends to increase until 160 days then inclined to decrease afterward. It
is thus likely that this belongs to the increasing-then-decreasing mean residual life (IDMRL)
type of distributions with change point of around 160 days.
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Chen and Cheng (2005) considered two covariates - performance status and tumor
type. The latter, although having four levels (large, adeno, small, squamous), was treated as
categorical with the large type being the reference group. This being the case, he estimated a
4-vector parameter of regression coefficients: that of (1) the performance status, (2) adeno
versus large, (3) small versus large, and (4) squamous versus large.

Table 6.1: Summary Statistics for the Lung Cancer Data

Percent
75
50
25

Quartile Estimates
Point 95% Confidence Interval

Estimate [Lower Upper)
144.000 117.000 228.000
80.000 52.000 105.000
29.000 21.000 45.000

Mean
120.739

Standard Error
13.752

Total Failed
97 91

Censored
6

Percent
Censored

6.19

600500400300200100
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Figure 6.1: Kaplan-Meier Estimates of the Survival Function for the
Lung Cancer Data
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Figure 6.2: The Estimated Mean Residual Life for the Lung Cancer Data
(Based on the Kaplan-Meier Analogue of the Empirical
Mean Residual Life)

Table 6.2 shows the parameter estimates of Cox's PH model and Oakes and Dasu's
PMRL model. Chen and Cheng's (2005) weighted estimation procedure was used to arrive at
the values in the last column. Generally, the interpretation of the PMRL parameter estimates
is similar to that of Cox's PH model. That is, the average remaining lifetime is estimated to
be increased (decreased) by a factor of exp(p;) for every unit increase in Z; controlling all

other factors. For example in this dataset, the average remaining lifetime ofa lung cancer
patient is estimated to be increased by a factor of exp (0.030) = 1.030 or 3% for every unit

increase in the performance status controlling all other factors.

Going back to Table 6.2, one can notice that the estimates based on Cox's model and
those of Oakes and Dasu's model are close to each other in magnitude, but have different
signs. This indicates that the two models might be equivalent for this particular data set, and
the baseline distribution is possibly exponential as in equation 5.3. To further investigate this,
we estimated the baseline survival function using the methodology provided by Kalbfleisch
and Prentice (1980), from which the estimates of the baseline hazard function and the
baseline MRL function was based. At a glance however, the baseline MRL in Figure 6.3 is
clearly not linear, and its product, in Figure 6.4, with the baseline hazard does not exhibit a
clear flat curve, which is what should be the case if the underlying distribution is of the Hall
Wellner family by Theorem 5. But, by restricting the window to the first 160'days, one can
already imagine a crude linear baseline MRL and a horizontal line in Figure 6.4. This is
possibly what brought about the relatively similar parameter magnitudes from the two
models, though the baseline MRL is not linear all the way, since the observed lifetimes less
than 160 days accounts for 81% of the subjects already. Note however that these observations
are drawn by visual inspection 'only, and hence must not be regarded as concrete. Formal
procedures for testing linearity of the baseline MRL still need to be developed to provide
stalwart and convincing conclusions.
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Table 6.2: Estimates of Regression Coefficient with Standard Errors
in the Lung Parenthesis for Cancer Data

Covariates Cox's PH Model
Oakes and Dasu's

PMRL Model

Performance Status
-0.024 0.030

(0.006) (0.006)
TumorTvpe

Adenovs Large
0.851 -0.801

(0.348) (0.532)

Smallvs Large
0.548 -0.499

(0.321) (0.522)

Squamous vs Large
-0.214 0.150
(0.347) (0.680)

MRLBOr------------------------,

70

0
0:

; .,-

.:. ..-,
"-'

.;."

t) ...........~~~~~._._~~~~....__,_~~~~~,.......,~~~~~'-I

o

Figure 6.3: The Estimated Baseline Mean Residual Life for the
Lung Cancer Data
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Figure 6.4: Product of the Estimated Baseline Mean Residual Life
and the Estimated Baseline Hazard for the Lung Cancer Data

VII SUMMARY AND DISCUSSION

The objective of this paper is to investigate the relationship between Cox's
Proportional Hazards (PH) model and Oakes and Dasu's Proportional Mean Residual Life
(PMRL) model analytically. It was noted that there is a one-to-one correspondence between
the MRL function and the survival function so that the each uniquely determines the other
(Theorem 1). But more importantly, we have shown an expression of the hazard in terms of
the MRL, though, the presence of the first derivative of the MRL introduces· a little hitch
(Theorem 2(b)). The converse is not straightforward however. That is, the MRL function can
only be expressed in terms of the cumulative hazard function which involves the
complication of integrals (Theorem 2(c)). Nevertheless, if we assume that the distribution
belongs to the Hall-Wellner family, i.e., the MRL is linear in t, then an explicit expression of
the MRL in terms of the hazard can be obtained. Theorems 5 and 6, however, achieved the
goal. The former states that a distribution satisfies both PH and PMRL if and only if the
baseline MRL is inversely proportional to the baseline hazard, while the latter affirms that the
baseline hazard and MRL functions are inversely proportional if and only if the baseline
distribution belongs to the Hall-Weiner class. This provides an alternative proof for Theorem
2 by Oakes and Dassu (1990), and gives a clear formula for the slope of the underlying linear
MRL. On the other hand, we were not able to find a straightforward relationship between
their parameters. But if the baseline distribution is exponential, then the product of their
baseline hazard and MRL is unity. More so, their parameters, though having opposite signs,
are equal in absolute value. Thus, if it is known that the baseline distribution is exponential,
modeling using Cox's PH is equivalent to modeling under the PMRL assumption. Shifting
from one model to the other will be effortless. .
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For researchers who are interested in coming up with fresh models, several extensions
of the PMRL model can be done. In this paper, we noticed that the covariates were always
treated as constants or nonstochastic. A possible modification is to extend Oakes and Dasu's
model to accommodate time varying covariates. Meanwhile, to resolve the possibility of an
underspecified PMRL model, a frailty variable can be included. Now to accommodate a
population with immunes, a PMRL model with immunes can be studied. Likewise, a frailty
PMRL model with immunes can be proposed as a generalization of the last two models.

Finally, we surmise that a test of exponentiality can be developed on the basis of
Theorem 5. Since the product of the hazard function and the MRL function is unity when the
underlying distribution is exponential, testing for exponentiality is equivalent to testing the
hypothesis that m(t)h(t) = 1. More generally, a test to determine whether empirical survival

times spawned from the Hall-Wellner family is possible by examining the flatness of
m(t)h(t) .
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